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Lecture 1: Motivation and Introduction

to Supersymmetry

• Motivation: The Hierarchy Problem

• Supermultiplets

• Particle content of the Minimal Supersymmetric Standard Model (MSSM)

• Need for “soft” breaking of supersymmetry

• The Wess-Zumino Model

• The supersymmetry algebra

• The superpotential
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There are good reasons to believe that the next discoveries beyond the presently

known Standard Model will involve supersymmetry (SUSY) .

Some of them are:

• A possible cold dark matter particle

• A light Higgs boson, in agreement with precision electroweak constraints

• Unification of gauge couplings

• Mathematical beauty

However, they are all insignificant compared to the one really good reason to

suspect that supersymmetry is real:

• The Hierarchy Problem
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The Hierarchy Problem

Consider the potential forH , the complex scalar

field that is the electrically neutral part of the

Standard Model Higgs field:

V (H) = m2
H |H|2 +

λ

2
|H|4

V(H)

|H|174 GeV
|

For electroweak symmetry breaking to agree with the experimentalmZ , we need:

〈H〉 =
√
−m2

H/λ ≈ 175 GeV

The requirement of unitarity in the scattering of Higgs bosons and longitudinalW

bosons tells us that λ is not much larger than 1. Therefore,

−(few hundred GeV)2 <∼ m2
H < 0.

However, this appears fine-tuned (in other words, incredibly and mysteriously

lucky!) when we consider the likely size of quantum corrections to m2
H .
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Contributions to m2
H from a Dirac fermion

loop:

H
λf λf

f

f

The correction to the Higgs squared mass parameter from this loop diagram is:

∆m2
H =

λ2
f

16π2

[
−2M2

UV + 6m2
f ln (MUV/mf ) + . . .

]

where λf is the coupling of the fermion to the Higgs field H .

MUV should be interpreted as the ultraviolet cutoff scale(s) at which new physics

enters to cut off the loop integrations.

So m2
H is sensitive to the largest mass scales in the theory.

5



For example, some people believe that String Theory is responsible for modifying

the high energy behavior of physics, making the theory finite. Compared to field

theory, string theory modifies the Feynman integrations over Euclidean momenta:
∫
d4p [. . .] →

∫
d4p e−p2/M2

string [. . .]

Using this, one obtains from each Dirac fermion one-loop diagram:

∆m2
H ∼ −

λ2
f

8π2
M2

string + . . .

A typical guess is that Mstring is comparable to MPlanck ≈ 2.4× 1018 GeV.

This makes it difficult to explain howm2
H could be so small, after incorporating

these relatively huge corrections.
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The Hierarchy Problem

We already know:

|m2
H |

M2
Planck

<∼ 10−32

Why should this number be so small, if individual radiative corrections ∆m2
H can

be of order M2
Planck or M2

string, multiplied by loop factors?

This applies even if String Theory is wrong and some other unspecified effects

modify physics at MPlanck, or any other very large mass scale, to make the loop

integrals converge.

An incredible coincidence seems to be required to make the corrections to the

Higgs squared mass cancel to give a much smaller number.
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Scalar loops give a “quadratically divergent”

contribution to the Higgs squared mass also.

Suppose S is some heavy complex scalar

particle that couples to the Higgs.
λS

S

H

∆m2
H =

λS

16π2

[
M2

UV − 2m2
S ln (MUV/mS) + . . .

]

(Note that the coefficient of the M2
UV term from a scalar loop has the opposite

sign of the fermion loop.)

In dimensional regularization, the terms proportional to M2
UV do not occur. One

could adopt dimensional regularization (although it seems unphysical for this

purpose), and also assume that the Higgs does not couple directly to any heavy

particles. But there is still a problem. . .
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Indirect couplings of the

Higgs to heavy particles

still give a problem:
(b)

H

F

(a)

H

F

Here F is any heavy fermion that shares gauge quantum numbers with the Higgs

boson. Its massmF does not come from the Higgs boson and can be arbitrarily

large. From these diagrams one finds (x is a group-theory factor):

∆m2
H = x

(
g2

16π2

)2 [
kM2

UV + 48m2
F ln(MUV/mF ) + . . .

]

Here k depends on the choice of cutoff procedure (and is 0 in dimensional

regularization). However, the contribution proportional to m2
F is always present.

More generally, any indirect communication between the Higgs boson and

very heavy particles, or very high-mass phenomena in genera l, can give an

unreasonably large contribution to m2
H .
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The systematic cancellation of loop corrections to the Higgs mass squared

requires the type of conspiracy that is better known to physicists as a symmetry .

Fermion loops and boson loops gave contributions with opposite signs:

∆m2
H = −

λ2
f

16π2
(2M2

UV) + . . . (Dirac fermion)

∆m2
H = +

λS

16π2
M2

UV + . . . (complex scalar)

So we need a SUPERSYMMETRY = a symmetry between fermions and bosons.

It turns out that this makes the cancellation not only possible, but automatic.

More on this later, but first, an historical analogy. . .
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An analogy: Coulomb self-energy correction to the electron ’s mass

H. Murayama, hep-ph/0002232

If the electron is really pointlike, the classical electrostatic contribution to its

energy is infinite.

Model the electron as a solid sphere of uniform charge density and radiusR:

∆ECoulomb =
3e2

20πǫ0R

Interpreting this as a correction ∆me = ∆ECoulomb/c
2 to the electron mass:

me,physical = me,bare + (1 MeV/c2)

(
0.9× 10−17 meters

R

)
.

A divergence arises if we try to take R→ 0. Naively, we might expect

R >∼ 10−17 meters, to avoid having to tune the bare electron mass to better

than 1%, for example:

0.511 MeV/c2 = −100.000 MeV/c2 + 100.511 MeV/c2.
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However, there is another important quantum mechanical contribution:

e− e− e−
+

e−

e+

e−

The virtual positron effect cancels most of the Coulomb contribution, leaving:

me,physical = me,bare

[
1 +

3α

4π
ln

(
h̄/mec

R

)
+ . . .

]

with h̄/mec = 3.9× 10−13 meters. Even if R is as small as the Planck length

1.6× 10−35 meters, where quantum gravity effects become dominant, this is

only a 9% correction.

The existence of a “partner” particle for the electron, the p ositron, is

responsible for eliminating the dangerously huge contribu tion to its mass.
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The “reason” for the positron’s existence can be understood from a symmetry ,

namely the Poincaré invariance of Einstein’s relativity when applied to the

quantum theory of electrons and photons (QED).

If we did not yet know about relativity or the positron, we would have had three

options:

• Assume that the electron is not point-like, and has structur e at a

measurable size R.

• Assume that the electron is (nearly?) pointlike, and there i s a

mysterious fine-tuning between the bare mass and the Coulomb

correction to it.

• Predict that the electron’s symmetry “partner”, the positr on, must exist.

Today we know that the last option is the correct one.
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Supersymmetry

A SUSY transformation turns a boson state into a fermion state, and vice versa.

So the operatorQ that generates such transformations acts, schematically, like:

Q|Boson〉 = |Fermion〉; Q|Fermion〉 = |Boson〉

This means that Q must be an anticommuting spinor. This is an intrinsically

complex object, so Q† is also a distinct symmetry generator:

Q†|Boson〉 = |Fermion〉; Q†|Fermion〉 = |Boson〉

The possible forms for such theories are highly restricted by the

Haag-Lopuszanski-Sohnius extension of the Coleman-Mandula Theorem.

In a 4-dimensional theory with chiral fermions (like the Standard Model) and

non-trivial scattering, then Q carries spin-1/2 with L helicity, and Q† has

spin-1/2 with R helicity, and they must satisfy. . .
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The Supersymmetry Algebra

{Q,Q†} = Pµ

{Q,Q} = {Q†, Q†} = 0

[Pµ, Q] = [Pµ, Q†] = 0

[T a, Q] = [T a, Q†] = 0

Here Pµ = (H, ~P) is the generator of spacetime translations, and T a are the

gauge generators. (This is schematic, with spinor indices suppressed for now. We

will restore them later.)

The single-particle states of the theory fall into irreducible representations of this

algebra, called supermultiplets . Fermion and boson members of a given

supermultiplet are superpartners of each other. By definition, if |Ω〉 and |Ω′〉 are

superpartners, then |Ω′〉 is equal to some combination of Q,Q† acting on |Ω〉.
Therefore, since P 2 and T a commute with Q,Q†, all members of a given

supermultiplet must have the same (mass) 2 and gauge quantum numbers.
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Each supermultiplet contains equal numbers of fermions and bosons

Proof: Consider the operator (−1)2S where S is spin angular momentum. Then

(−1)2S =

 −1 acting on fermions

+1 acting on bosons

So, (−1)2S must anticommute with Q and Q†. Now consider all states |i〉 in a given
supermultiplet with the same momentum eigenvalue pµ 6= 0. These form a complete set
of states, so

P
j |j〉〈j| = 1. Now do a little calculation:

pµTr[(−1)2S] =
X

i

〈i|(−1)2SP µ|i〉 =
X

i

〈i|(−1)2SQQ†|i〉 +
X

i

〈i|(−1)2SQ†Q|i〉

=
X

i

〈i|(−1)2SQQ†|i〉 +
X

i

X

j

〈i|(−1)2sQ†|j〉〈j|Q|i〉

=
X

i

〈i|(−1)2SQQ†|i〉 +
X

j

〈j|Q(−1)2SQ†|j〉

=
X

i

〈i|(−1)
2S

QQ
†
|i〉 −

X

j

〈j|(−1)
2S

QQ
†
|j〉

= 0.

The trace just counts the number of boson minus the number of fermion degrees

of freedom in the supermultiplet. Therefore, pµ(nB − nF ) = 0.
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Types of supermultiplets

Chiral (or “Scalar” or “Matter” or “Wess-Zumino”) supermultiplet:

1 two-component Weyl fermion, helicity± 1
2 . (nF = 2)

2 real spin-0 scalars = 1 complex scalar. (nB = 2)

The Standard Model quarks, leptons and Higgs bosons must fit i nto these.

Gauge (or “Vector”) supermultiplet:

1 two-component Weyl fermion gaugino, helicity± 1
2 . (nF = 2)

1 real spin-1 massless gauge vector boson. (nB = 2)

The Standard Model γ, Z,W±, g must fit into these.

Gravitational supermultiplet:

1 two-component Weyl fermion gravitino, helicity± 3
2 . (nF = 2)

1 real spin-2 massless graviton. (nB = 2)
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How do the Standard Model quarks and leptons fit in?

Each quark or charged lepton is 1 Dirac = 2 Weyl fermions

Electron: Ψe =

(
eL

eR

) ← two-component Weyl LH fermion

← two-component Weyl RH fermion

Each of eL and eR is part of a chiral supermultiplet, so each has a complex,

spin-0 superpartner, called ẽL and ẽR respectively. They are called the

“left-handed selectron” and “right-handed selectron”, although they carry no spin.

The conjugate of a right-handed Weyl spinor is a left-handed Weyl spinor. Define

two-component left-handed Weyl fields: e ≡ eL and ē ≡ e†R. So, there are two

left-handed chiral supermultiplets for the electron:

(e, ẽL) and (ē, ẽ∗R).

The other charged leptons and quarks are similar. We do not need νR in the

Standard Model, so there is only one neutrino chiral supermultiplet for each family:

(νe, ν̃e).
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Chiral supermultiplets of the Minimal Supersymmetric Standard Model (MSSM):

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (euL
edL) (uL dL) ( 3, 2 , 1

6
)

(×3 families) ū eu∗
R u†

R ( 3, 1, − 2

3
)

d̄ ed∗R d†R ( 3, 1, 1

3
)

sleptons, leptons L (eν eeL) (ν eL) ( 1, 2 , − 1

2
)

(×3 families) ē ee∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) ( eH+
u

eH0
u) ( 1, 2 , + 1

2
)

Hd (H0
d H−

d ) ( eH0
d

eH−
d ) ( 1, 2 , − 1

2
)

The superpartners of the Standard Model particles are written with a ˜ . The

scalar names are obtained by putting an “s” in front, so they are generically called

squarks and sleptons , short for “scalar quark” and “scalar lepton”.

The Standard Model Higgs boson requires two different chiral supermultiplets,Hu and

Hd. The fermionic partners of the Higgs scalar fields are called higgsinos . There

are two charged and two neutral Weyl fermion higgsino degrees of freedom.

19



Why do we need two Higgs supermultiplets? Two reasons:

1) Anomaly Cancellation

f eHu
eHd

X

SM fermions

Y 3
f = 0 + 2

„
1

2

«3

+ 2

„
−1

2

«3

= 0

This anomaly cancellation occurs if and only if both H̃u and H̃d higgsinos are

present. Otherwise, the electroweak gauge symmetry would not be allowed!

2) Quark and Lepton masses

Only the Hu Higgs scalar can give masses to charge +2/3 quarks (top).

Only the Hd Higgs scalar can give masses to charge−1/3 quarks (bottom) and

the charged leptons. We will show this later.
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The vector bosons of the Standard Model live in gauge supermu ltiplets:

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon eg g ( 8, 1 , 0)

winos, W bosons fW± fW 0 W± W 0 ( 1, 3 , 0)

bino, B boson eB0 B0 ( 1, 1 , 0)

The spin-1/2 gauginos transform as the adjoint representation of the gauge

group. Each gaugino carries a .̃ The color-octet superpartner of the gluon is

called the gluino . The SU(2)L gauginos are called winos , and the U(1)Y

gaugino is called the bino .

However, the winos and the bino are not mass eigenstate particles; they mix with

each other and with the higgsinos of the same charge.
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Recall that if supersymmetry were an exact symmetry, then superpartners would

have to be exactly degenerate with each other. For example,

mẽL
= mẽR

= me = 0.511 GeV

mũL
= mũR

= mu

mg̃ = mgluon = 0 + QCD-scale effects

etc.

But new particles with these properties have been ruled out long ago, so:

Supersymmetry must be broken in the vacuum state chosen by Na ture .

Supersymmetry is thought to be spontaneously broken and therefore hidden, the

same way that the full electroweak symmetry SU(2)L × U(1)Y is hidden from

very low-energy experiments.
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For a clue as to the nature of SUSY breaking, return to our motivation in the

Hierarchy Problem. The Higgs mass parameter gets corrections from each chiral

supermultiplet:

∆m2
H =

1

16π2
(λS − λ2

F )M2
UV + . . .

The corresponding formula for Higgsinos has no term proportional to M2
UV;

fermion masses always diverge at worst like ln(MUV). Therefore, if

supersymmetry were exact and unbroken, it must be that:

λS = λ2
F ,

in other words, the dimensionless (scalar)4 couplings are the squares of the

(scalar)-(fermion)-(antifermion) couplings.

If we want SUSY to be a solution to the hierarchy problem, we must demand that

this is still true even after SUSY is broken:

The breaking of supersymmetry must be “soft”. This means tha t it does not

change the dimensionless terms in the Lagrangian.
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The effective Lagrangian of the MSSM is therefore:

L = LSUSY + Lsoft

• LSUSY contains all of the gauge, Yukawa, and dimensionless scalar

couplings, and preserves exact supersymmetry

• Lsoft violates supersymmetry, and contains only mass terms and couplings

with positive mass dimension.

If msoft is the largest mass scale in Lsoft, then by dimensional analysis,

∆m2
H = m2

soft

»
λ

16π2
ln(MUV/msoft) + . . .

–
,

where λ stands for dimensionless couplings. This is because ∆m2
H must vanish

in the limit msoft → 0, in which SUSY is restored. Therefore, we expect that

msoft should not be much larger than roughly 1000 GeV.

This is the best reason to be optimistic that SUSY will be disc overed at the

Fermilab Tevatron or the CERN Large Hadron Collider in the ne ar future.
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Without further justification, soft SUSY breaking might seem like a rather arbitrary

requirement. Fortunately, it arises naturally from the spontaneous breaking of

theories with exact SUSY.

Is there any good reason why the superpartners of the Standard Model particles

should be heavy enough to have avoided discovery so far? Yes!

• All of the particles in the MSSM that have been discovered as of 1995

(quarks, leptons, gauge bosons) would be exactly massless if the electroweak

symmetry were not broken. So their masses are expected to be at most of

order v = 175 GeV, the electroweak breaking scale. They are required to

be light.

• All of the particles in the MSSM that have not yet been discovered as of 2008

(squarks, sleptons, gauginos, Higgsinos, Higgs scalars) can get a mass even

without electroweak symmetry breaking. They are not required to be light.
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Notations for two-component (Weyl) fermions

Left-handed (LH) two-component Weyl spinor: ψα α = 1, 2

Right-handed (RH) two-component Weyl spinor: ψ†
α̇ α̇ = 1, 2

The Hermitian conjugate of a left-handed Weyl spinor is a right-handed Weyl

spinor, and vice versa:

(ψα)† = (ψ†)α̇ ≡ ψ†
α̇

Therefore, all spin-1/2 fermionic degrees of freedom in any theory can be defined

in terms of a list of left-handed Weyl spinors, ψiα where i is a flavor index. With

this convention, right-handed Weyl spinors always carry a dagger: ψ†i
α̇ .
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Products of spinors are defined as:

ψξ ≡ ψαξβǫ
βα and ψ†ξ† ≡ ψ†

α̇ξ
†

β̇
ǫα̇β̇

Since ψ and ξ are anti-commuting fields, the antisymmetry of ǫαβ implies:

ψξ = ξψ = (ψ†ξ†)∗ = (ξ†ψ†)∗.

To make Lorentz-covariant quantities, define matrices (σµ)α̇β and (σµ)αβ̇ with:

σ0 = σ0 =

„
1 0

0 1

«
; σn = −σn = (~σ)n (for n = 1, 2, 3).

Then the Lagrangian for an arbitrary collection of LH Weyl fermions ψi is:

L = −iψ†iσµDµψi − 1
2M

ijψiψj − 1
2Mijψ

†iψ†j

where Dµ = covariant derivative, and the mass matrix M ij is symmetric, with

Mij ≡ (M ij)∗.
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Two LH Weyl spinors ξ, χ can form a 4-component Dirac or Majorana spinor:

Ψ =

„
ξα

χ†α̇

«

In the 4-component formalism, the Dirac Lagrangian is:

L = −iΨγµ∂µΨ −mΨΨ, where γµ =

„
0 σµ

σµ 0

«
,

In the two-component fermion language, with spinor indices suppressed:

L = −iξ†σµ∂µξ − iχ†σµ∂µχ−m(ξχ+ ξ†χ†),

up to a total derivative.

A Majorana fermion can be described in 4-component language in the same way

by identifying χ = ξ, and multiplying the Lagrangian by a factor of 1
2 to

compensate for the redundancy.
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For example, to describe the Standard Model fermions in 2-component notation:

L = −iQ†iσµDµQi − iū†iσµDµūi − id̄†iσµDµd̄i

−iL†iσµDµLi − iē†iσµDµēi

with the family index i = 1, 2, 3 summed over, color and weak isospin and spinor

indices suppressed, andDµ the appropriate Standard Model covariant derivative,

for example,

DµL =

»
∂µ + i

g

2
W a

µ τ
a − i

g′

2
Bµ

– „
νe

e

«

Dµe =
ˆ
∂µ + ig′Bµ

˜
ē

with τa (a = 1, 2, 3) equal to the Pauli matrices, and the gauge eigenstate weak

bosons are related to the mass eigenstates by

W±
µ = (W 1

µ ∓W 2
µ)/

√
2,

„
Zµ

Aµ

«
=

„
cos θW − sin θW

sin θW cos θW

«„
W 3

µ

Bµ

«
.
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Two-component spinor language is much more natural and

convenient for SUSY, because the supermultiplets are in

one-to-one correspondence with the LH Weyl fermions.

More generally, two-component spinor language is more natural for
any theory of physics beyond the Standard Model, because it is an
Essential Truth that parity is violated. Nature does not treat
left-handed and right-handed fermions the same, and the higher we
go in energy, the more essential this becomes.
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The simplest SUSY model: a free chiral supermultiplet

The minimum particle content for a SUSY theory is a complex scalar φ and its

superpartner fermion ψ. We must at least have kinetic terms for each, so:

S =

∫
d4x (Lscalar + Lfermion)

Lscalar = −∂µφ∗∂µφ Lfermion = −iψ†σµ∂µψ

A SUSY transformation should turn φ into ψ, so try:

δφ = ǫψ; δφ∗ = ǫ†ψ†

where ǫ = infinitesimal, anticommuting, constant spinor, with dimension

[mass]−1/2, that parameterizes the SUSY transformation. Then we find:

δLscalar = −ǫ∂µψ∂µφ
∗ − ǫ†∂µψ†∂µφ.

We would like for this to be canceled by an appropriate SUSY transformation of

the fermion field. . .
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To have any chance, δψ should be linear in ǫ† and in φ, and must contain one

spacetime derivative. There is only one possibility, up to a multiplicative constant:

δψα = i(σµǫ†)α∂µφ; δψ†
α̇ = −i(ǫσµ)α̇∂µφ

∗

With this guess, one obtains:

δLfermion = −δLscalar + (total derivative)

so the action S is indeed invariant under the SUSY transformation, justifying the

guess of the multiplicative factor. This is called the free Wess-Zumino model.

Furthermore, if we take the commutator of two SUSY transformations:

δǫ2(δǫ1φ)− δǫ1(δǫ2φ) = i(ǫ1σ
µǫ2 − ǫ2σµǫ1)∂µφ

Since ∂µ corresponds to the spacetime 4-momentum Pµ, this has exactly the

form demanded by the SUSY algebra discussed earlier. (More on this soon.)
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The fact that two SUSY transformations give back another symmetry (namely a

spacetime translation) means that the SUSY algebra “closes”.

If we do the same check for the fermion ψ:

δǫ2(δǫ1ψα)− δǫ1(δǫ2ψα) = i(ǫ1σ
µǫ2 − ǫ2σµǫ1)∂µψα

−iǫ1α(ǫ†2σ
µ∂µψ) + iǫ2α(ǫ†1σ

µ∂µψ)

The first line is expected, but the second line only vanishes on-shell (when the

classical equations of motion are satisfied). This seems like a problem, since we

want SUSY to be a valid symmetry of the quantum theory (off-shell)!

To show that there is no problem, we introduce another bosonic spin-0 field, F ,

called an auxiliary field. Its Lagrangian density is:

Laux = F ∗F

Note that F has no kinetic term, and has dimensions [mass]2, unlike an ordinary

scalar field. It has the not-very-exciting equations of motion F = F ∗ = 0.
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The auxiliary field F does not affect the dynamics, classically or in the quantum

theory. But it does appear in modified SUSY transformation laws:

δφ = ǫψ

δψα = i(σµǫ†)α∂µφ+ ǫαF

δF = iǫ†σµ∂µψ

Now the total Lagrangian

L = −∂µφ∗∂µφ− iψ†σµ∂µψ + F ∗F

is still invariant, and also one can now check:

δǫ2(δǫ1X)− δǫ1(δǫ2X) = i(ǫ1σ
µǫ2 − ǫ2σµǫ1)∂µX

for each of X = φ, φ∗, ψ, ψ†, F, F ∗, without using equations of motion.

So in the “modified” theory, SUSY does close off-shell as well as on-shell.
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The auxiliary field F is really just a book-keeping device to make this simple.

We can see why it is needed by considering the number of degrees of freedom

on-shell (classically) and off-shell (quantum mechanically):

φ ψ F

on-shell (nB = nF = 2) 2 2 0

off-shell (nB = nF = 4) 2 4 2

(Going on-shell eliminates half of the propagating degrees of freedom of the

fermion, because the Lagrangian density is linear in time derivatives, so that the

fermionic canonical momenta are not independent phase-space variables.)

The auxiliary field will also plays an important role when we add interactions to

the theory, and in gaining a simple understanding of SUSY breaking.
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Noether’s Theorem tells us that for every symmetry, there is a conserved current,

and SUSY is not an exception. The supercurrent Jµ
α is an anti-commuting

4-vector that also carries a spinor index.

By the usual Noether procedure, one finds for the supercurrent (and its conjugate

J†), in terms of the variations of the fields δX for X = (φ, φ∗, ψ, ψ†, F, F ∗):

ǫJµ + ǫ†J†µ ≡
∑

X

δX
δL

δ(∂µX)
−Kµ,

where Kµ satisfies δL = ∂µK
µ. One finds:

Jµ
α = (σνσµψ)α ∂νφ

∗; J†µ
α̇ = (ψ†σµσν)α̇ ∂νφ.

The supercurrent and its hermitian conjugate are separately conserved:

∂µJ
µ
α = 0; ∂µJ

†µ
α̇ = 0,

as can be verified by use of the equations of motion.
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From the conserved supercurrents one can construct the conserved charges:

Qα =
√

2

∫
d3x J0

α; Q†
α̇ =
√

2

∫
d3x J†0

α̇ ,

As quantum mechanical operators, they satisfy:

[
ǫQ+ ǫ†Q†, X

]
= −i

√
2 δX

for any field X . Let us also introduce the 4-momentum operator Pµ = (H, ~P ),

which satisfies:

[Pµ, X ] = i∂µX.

Now by using the canonical commutation relations of the fields, one finds:

[
ǫ2Q+ ǫ†2Q

†, ǫ1Q+ ǫ†1Q
†
]

= 2(ǫ2σµǫ
†
1 − ǫ1σµǫ

†
2)P

µ

[
ǫQ+ ǫ†Q†, P

]
= 0

This implies. . .
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The SUSY Algebra

{Qα, Q
†
α̇} = 2σµ

αα̇Pµ,

{Qα, Qβ} = {Q†
α̇, Q

†

β̇
} = 0

[Qα, P
µ] = [Q†

α̇, P
µ] = 0

This time in non-schematic form, with the spinor indices and the factors of 2 in

their proper places.

(The commutators turned into anti-commutators in the first two, when we

extracted the anti-commutating spinors ǫ1, ǫ2.)
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Masses and Interactions for Chiral Supermultiplets

The Lagrangian describing a collection of free, massless, chiral supermultiplets is

L = −∂µφ∗i∂µφi − iψ†iσµ∂µψi + F ∗iFi.

Question: How do we make mass terms and interactions for these fields, while

still preserving supersymmetry invariance?

Answer: choose a superpotential ,

W = 1
2M

ijφiφj + 1
6y

ijkφiφjφk.

It does not depend on φ∗i, only the φi. It must be an analytic function of the

scalar fields treated as complex variables.

The superpotentialW contains massesM ij and couplings yijk , which must be

symmetric under interchange of i, j, k.

Supersymmetry is very restrictive; you cannot just do anyth ing you want!
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The resulting Lagrangian for interacting chiral supermultiplets is:

L = −∂µφ∗i∂µφi − iψ†iσµ∂µψi

− 1
2

(
M ijψiψj + yijkφiψjψk

)
+ c.c.

−V (φi, φ
∗i)

where the scalar potential is:

V (φi, φ
∗i) = MikM

kjφ∗iφj +
1

2
M inyjknφiφ

∗jφ∗k

+
1

2
Miny

jknφ∗iφjφk +
1

4
yijnyklnφiφjφ

∗kφ∗l

The superpotential W “encodes” all of the information about these masses

and interactions.
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The superpotential W = M ijφiφj + yijkφiφjφk determines

all non-gauge masses and interactions.

Both scalars and fermions have squared mass matrix MikM
kj .

The interaction Feynman rules for the chiral supermultiple ts are:

Yukawa interactions:
j k

i

−iyijk

j k

i

−iyijk

Scalar interactions:
j k

i

−iM inynjk

j k

i

−iMiny
njk

i j

k ℓ

−iyijnykℓn
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Covered in Lecture 1:

• The Hierarchy Problem, mZ ≪ mPlanck, is a strong motivation for

supersymmetry (SUSY)

• In SUSY, all particles fall into:

– Chiral supermultiplet = complex scalar boson and fermion partner

– Gauge supermultiplet = vector boson and gaugino fermion partner

– Gravitational supermultiplet = graviton and gravitino fermion partner

• The Minimal Supersymmetric Standard Model (MSSM) introduces squarks,

sleptons, Higgsinos, gauginos as the superpartners of Standard Model states

• Two-component fermion notation: ψα = LH fermion, ψ†
α̇ = RH fermion

• The Wess-Zumino Model Lagrangian describes a single chiral supermultiplet

• The Supersymmetry Algebra

• Superpotentials and interactions
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